2,942 research outputs found

    Spin glass like transition in a highly concentrated Fe-C nanoparticle system

    Full text link
    A highly concentrated (17 vol.%) Fe-C nano-particle system, with a narrow size distribution d=5.4±0.4d = 5.4\pm 0.4 nm, has been investigated using magnetic ac susceptibility measurements covering a wide range of frequencies (17 mHz - 170 Hz). A dynamic scaling analysis gives evidence for a phase transition to a low temperature spin-glass-like phase. The critical exponents associated with the transition are zν=10.5±2z\nu = 10.5 \pm 2 and β=1.1±0.2\beta = 1.1 \pm 0.2. The reason why the scaling analysis works for this sample, while it may not work for other samples exhibiting collective behavior as evidenced by aging phenomena, is that the single particle contribution to χ\chi'' is vanishingly small for T>TgT>T_g and hence all slow dynamics is due to collective behavior. This criterion can only be fulfilled for a highly concentrated nano-particle sample with a narrow size distribution.Comment: 2 pages, 3 figures, Proceeding for ICM200

    Critical dynamics of an interacting magnetic nanoparticle system

    Full text link
    Effects of dipole-dipole interactions on the magnetic relaxation have been investigated for three Fe-C nanoparticle samples with volume concentrations of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective behavior due to dipolar interactions, only the 17 vol% sample displays critical behavior close to its transition temperature. The behaviour of the 5 vol% sample can be attributed to a mixture of collective and single particle dynamics.Comment: 19 pages, 8 figure

    Extended transition rates and lifetimes in Al I and Al II from systematic multiconfiguration calculations

    Full text link
    Multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) calculations were performed for 28 and 78 states in neutral and singly ionized aluminium, respectively. In Al I, the configurations of interest are 3s2nl3s^2nl for n=3,4,5n=3,4,5 with l=0l=0 to 44, as well as 3s3p23s3p^2 and 3s26l3s^26l for l=0,1,2l=0,1,2. In Al II, the studied configurations are, besides the ground configuration 3s23s^2, 3snl3snl with n=3n=3 to 66 and l=0l=0 to 55, 3p23p^2, 3s7s3s7s, 3s7p3s7p and 3p3d3p3d. Valence and core-valence electron correlation effects are systematically accounted for through large configuration state function (CSF) expansions. Calculated excitation energies are found to be in excellent agreement with experimental data from the NIST database. Lifetimes and transition data for radiative electric dipole (E1) transitions are given and compared with results from previous calculations and available measurements, for both Al I and Al II. The computed lifetimes of Al I are in very good agreement with the measured lifetimes in high-precision laser spectroscopy experiments. The present calculations provide a substantial amount of updated atomic data, including transition data in the infrared region. This is particularly important since the new generation of telescopes are designed for this region. There is a significant improvement in accuracy, in particular for the more complex system of neutral Al I. The complete tables of transition data are available

    Comment on "Memory Effects in an Interacting Magnetic Nanoparticle System"

    Get PDF
    In Phys. Rev. Lett. 91 167206 (2003), Sun et al. study memory effects in an interacting nanoparticle system with specific temperature and field protocols. The authors claim that the observed memory effects originate from spin-glass dynamics and that the results are consistent with the hierarchical picture of the spin-glass phase. In this comment, we argue their claims premature by demonstrating that all their experimental curves can be reproduced qualitatively using only a simplified model of isolated nanoparticles with a temperature dependent distribution of relaxation times.Comment: 1 page, 2 figures, slightly changed content, the parameters involved in Figs. 1 and 2 are changed a little for a semi-quantitative comparision with experimental result

    On-demand delivery of single DNA molecules using nanopipettes

    Get PDF
    Understanding the behavioral properties of single molecules or larger scale populations interacting with single molecules is currently a hotly pursued topic in nanotechnology. This arises from the potential such techniques have in relation to applications such as targeted drug delivery, early stage detection of disease, and drug screening. Although label and label-free single molecule detection strategies have existed for a number of years, currently lacking are efficient methods for the controllable delivery of single molecules in aqueous environments. In this article we show both experimentally and from simulations that nanopipets in conjunction with asymmetric voltage pulses can be used for label-free detection and delivery of single molecules through the tip of a nanopipet with “on-demand” timing resolution. This was demonstrated by controllable delivery of 5 kbp and 10 kbp DNA molecules from solutions with concentrations as low as 3 pM

    Dynamical breakdown of the Ising spin-glass order under a magnetic field

    Full text link
    The dynamical magnetic properties of an Ising spin glass Fe0.55_{0.55}Mn0.45_{0.45}TiO3_3 are studied under various magnetic fields. Having determined the temperature and static field dependent relaxation time τ(T;H)\tau(T;H) from ac magnetization measurements under a dc bias field by a general method, we first demonstrate that these data provide evidence for a spin-glass (SG) phase transition only in zero field. We next argue that the data τ(T;H)\tau(T;H) of finite HH can be well interpreted by the droplet theory which predicts the absence of a SG phase transition in finite fields.Comment: 4 pages, 5 figure

    Isotope Shifts in Beryllium-, Boron-, Carbon-, and Nitrogen-like Ions from Relativistic Configuration Interaction Calculations

    Full text link
    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wave functions that account for valence, core-valence and core-core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.Comment: 56 pages, 1 figure, Atomic Data and Nuclear Data Tables (2014

    Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system

    Get PDF
    In this paper we investigate the superspin glass behavior of a concentrated assembly of interacting maghemite nanoparticles and compare it to that of canonical atomic spin glass systems. ac versus temperature and frequency measurements show evidence of a superspin glass transition taking place at low temperature. In order to fully characterize the superspin glass phase, the aging behavior of both the thermo-remanent magnetization (TRM) and ac susceptibility has been investigated. It is shown that the scaling laws obeyed by superspin glasses and atomic spin glasses are essentially the same, after subtraction of a superparamagnetic contribution from the superspin glass response functions. Finally, we discuss a possible origin of this superparamagnetic contribution in terms of dilute spin glass models
    corecore